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Abstract

This research aims enhancing the efficiency and reliability of PATH, the most widely
used solver for mixed complementarity problems. A key component of the PATH algo-
rithm is solving a series of linear complementary subproblems with a pivotal scheme.
Improving the efficiency of the linear system routines (factor, solve, and update) re-
quired by the pivotal method is the critical computational issue. We incorporate two
new options besides the default LUSOL package in PATH for such functionalities. One
of the options employs the UMFPACK package for factor and solve operations, together
with an implementation of a stable and efficient block-LLU updating scheme, which leads
to a significantly more effective version of PATH for solving many large-scale sparse sys-
tems. The other option exploits the COIN-OR utilities enhanced by adapting the linear
refinements and scaling schemes used in the COIN-LP routines, which is effective in
solving smaller-scale systems but less competitive on large-scale cases.

1 Introduction

Complementarity problems arise in diverse engineering and economics applications [18] and
play an important role in constrained optimization problems, encompassing the optimality
conditions for linear and convex nonlinear programs and for variational inequalities. PATH
[10, 16] is a generalized Newton method for solving complementarity problems that has
been effective at solving relatively difficult problems (see, for example, [2, 35]). For larger
problems, however, the numerical linear algebra is inadequate to obtain good performance.

Most of the computational effort in PATH involves factoring and solving linear sys-
tems of equations and performing rank-one updates to find the Newton point via a pivotal
method. LUSOL [24] is the method currently used by PATH for this functionality. We
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explore two other options: UMFPACK and COIN-OR. UMFPACK [5] is effective at fac-
toring and solving sparse linear systems; we provide rank-one updates using the Sherman-
Morrison-Woodbury formula. COIN-OR [27] supports COIN-LP and many other optimiza-
tion projects in the COIN-OR repository; their linear algebra routines have factor, solve,
and rank-one update capabilities.

This paper describes our experiences using these two options. Section 2 provides back-
ground information on complementarity problems and the PATH algorithm. Section 3
motivates exploring the UMFPACK and COIN-OR packages by first providing some statis-
tics demonstrating that solving linear systems efficiently is the key computational issue
for PATH. We then show that UMFPACK is more effective than LUSOL for factoring
and solving certain linear large-scale systems. We also present some successes obtained
by the COIN-LP solver to motivate our choice of the COIN-OR utilities as the other can-
didate for improving PATH. Section 4 describes the PATH basis object, the necessary
functions for factoring and solving linear systems, and details for the existing and new
UMFPACK and COIN-OR implementations. Computational results comparing the basis
packages are given in Section 5. These results show that PATH/UMFPACK is more effi-
cient than PATH/LUSOL at solving most large-scale complementarity problems, whereas
PATH/COIN is effective at solving smaller-scale systems but solves large-scale problems
less effectively than the other options. Section 6 summarizes our conclusions.

2 Complementarity Problems and the PATH Algorithm

The mixed complementarity problem (MCP) is defined by the set B := {z € R"|l < z < u}
with bounds /; € RU{—o00} and u; € RU{oo} such that [; <w; for all i =1,...,n, and a
function F': B — R™. A vector z € R" is a solution if and only if one of the following holds
foreachi=1,...,n:
l; <z <wu; and Fi(z)=0
zi=1; and Fi(z)>0 (1)
zi=u; and Fj(z) <O0.

Note that if I; = u;, then z; = [; = u; is a fixed value and any Fj;(z) satisfies (1).
Solving a mixed complementarity problem is equivalent to finding a zero of the normal
equation [33]:
Fg(z) := F(mB(x)) + ¢ — mB(z) =0,

where mg(+) is the Euclidean projection onto the set B. If x* solves the normal equation,
then z* := mg(z*) solves (1). Conversely, if z* solves (1), then z* = z* — F'(z*) solves the
normal equation.

PATH is a generalized Newton method for solving the normal equation that is globalized
via a nonmonotone search using a smooth merit function. Because the merit function is
smooth, a steepest descent direction can be used when the search using the Newton point
fails to yield a new iterate satisfying the nonmonotone search criteria. This algorithmic
framework is well defined with global convergence guarantees and locally fast convergent
rates [14, 30]. The implementation contains the following parts:

1. Preprocess the mixed complementarity problem to fix variables, improve bounds, and
eliminate redundancy [17].



2. Identity an approximation to the active set at the solution using a crash technique.

3. Linearize the normal map at the current iterate, solve the linearization by constructing
a piecewise linear path between the current iterate and the solution, and search using
the generated path to determine a new iterate satisfying the nonmonotone search
criteria.

Details for the crash method, forming and solving the linearizations, and the nonmonotone
search criteria are given in the following sections. Proofs are omitted; additional details can
be found in the corresponding references.

2.1 Merit Function

When solving a nonlinear system of equations, a search along the Newton direction is
performed to find a new iterate that sufficiently decreases the chosen merit function value.
In the implementation of the Newton method in PATH, this search uses nonmonotone
descent criteria [15, 25, 26] with a watchdog technique [3]. The current default merit
function is based on the Fisher-Burmeister function [19], ¢ : R? — R, defined as

o(a,b) :=+va?+b*—a—h.

Any zero of the Fisher-Burmeister function is known to satisfy the complementarity condi-
tions:
¢(a,b) =0<a>0,b>0,ab=0.

With this property, a general mixed complementarity problem in the form of (1) can be
reformulated as the system of equations ®(z) = 0, with ® : R” — R" defined componentwise
as

d(zi — 1, Fi(2)) if —oco<; <u; =400
—p(u; — 2z, —F;(2)) if —oo=1; <wu; <400

Di(2) =< Oz — b, d(uj — 2z, —Fi(2))) if —o0o<l; <uj <400
—Fi(2) if —oco=1[; <u; =400
0 otherwise

for i € {1,...,n}. The merit function is
1 2
V(z) = Sl (2)

The advantage of using ¥ over other classical merit functions such as the norm of the
normal map is that ¥ is continuously differentiable with gradient V¥(z) = 9®(2)T ®(z).
Note that the ® is nondifferentiable in general; hence 0®(z) is the generalized Jacobian of
®(z). Detailed formulas for calculating the gradient of the merit function can be found in
[14].

2.2 Crash Method

The crash method is a way to compute a good active set. It is based on a projected Newton
method. First the active set with the correctly signed function values at the initial point



20 = mg(2V) is identified. The corresponding index set of variable z is denoted by A, where

A:={ie{l,...,n}{zi =1, Fi(z) >0} or {z; = w;, Fi(z) <0}}.

The Newton direction for a reduced system is then computed:
(VFrz(2") + el dr = Fr(2"), (3)

where Z = {1,...,n}\\A and € is a perturbation parameter (see below). We then set d4 = 0
and compute an « € (@, 1] such that the new iterate

o) = (1 —a)* + ang(zF — d)

with the default line search or
F(a) = mB((1 — @) + a(F - d))
with an arc search decreases the merit function
U(h) — o V(M) ( (a)]z

¥(2(a)) < i V0 (M) (2 — 2h(a) < 0
(1 — ao)¥(2F), otherwise

where @ is a constant minimum step size and ¥(z) defined in (2) is chosen as the merit
function. In solving the reduced system in (3), the perturbation parameter € is zero, unless
the reduced matrix VFrz(z*) is rank deficient. In this case we choose a large enough e
such that VFrz(z*) + eI is numerically nonsingular. Then e is reduced on subsequent
crash steps based on the residual of the merit function. Since the crash method does
not guarantee convergence, we terminate the process if any of the following criteria are
satisfied: the number of iterations exceeds a maximum value; the step length is too small;
not enough changes of the active set have been made consecutively for several iterations;
or the perturbation scheme is not successful. If the crash iterates manage to converge to a
small enough merit function value, the original MCP is solved solely in the crash process.
Some benefits of using the crash technique and its convergence properties can be found in
[11].

2.3 Linearization

Newton’s method for smooth functions linearizes the function at the current iterate and
solves a linear system of equations to obtain a direction. The normal map Fg(x) is nons-
mooth, however, because of the projection operator mg(z), and a linearization of Fg(x) is
not available. Rather, the following piecewise affine map approximates the function around

IEkZ

Li(z) := (VF(WB(a:k)) +el)(mB(z) — FB(QZk)) + F(?TB(LL’k)) +x —m(z), (4)
with a perturbation parameter ¢ similarly defined and updated as in the crash procedure.
This approximation is solved by constructing a parametric piecewise linear path p*(t) for
t € [0, T%], with T* € (0, 1] satisfying

p*(0) = a*, (5)
Ly(p* (1)) = (1 — t) F(2"). (6)



The Newton point 2%, is defined as p*(T"*), which solves the linearization if T% = 1. These
conditions require that the path start at the current point z* and that the norm of the
approximation at points on the path decrease at least linearly in 1 —¢t. Note that p(t) may
not be single valued because the path can make turns.

Instead of constructing the path directly by using (5)—(6), a pivotal technique is used
to solve an equivalent linear complementarity problem constructed as follows. Let z(t) =
mB(x(t)), v(t) = (x(t) — 2(t))+ and w(t) = (2(t) — x(t));. Then, p*(t), can be expressed as

pP(t) = 2(t) —w(t) +v(t) Vtelo,TH.

Using the transformation above, together with the definition of the piecewise affine map in
(4), we can express (6) as

Mz(t)+q—w(t)+v(t)=(1—t)r,

where M = VF(rg(2¥)) + eI, ¢ = F(ms(2*)) — VF(rg(2*))ng(2¥), and r = Fg(a").
In the actual implementation, we scale the covering vector r in the above equation by a
scalar s. We also augment the system by incorporating a vector of artificial variables (a) to
help construct an invertible basis under possible rank deficiency. In particular, the linear
complementarity problem becomes

Mz(t) + g — w(t) + v(t) + a — T

v (u—

z€B,w20,v207a_0,t€

) _
w'(z—1) =
2) = (7)
[0, ]-

A guess of the initial basis of the above system follows the active set approximation result-
ing from the crash process. We rely on the factorization routines to detect possible rank
deficiency and identify linearly dependent rows and columns in the initial basis. The basis
is then defined appropriately based on the singularity information, so that the system (7)
has an invertible basis at the starting point. A pivotal technique similar to Lemke’s method
with specific entering and leaving pivotal rules can then be used to construct the path.
Each pivot leads to a new piece on the path. If, in the end, the pivots terminate with ¢
leaving the basis at 1, then the linear complementarity problem is solved successfully, and
the Newton point % = p¥(1) is generated from (z(1),w(1),v(1)). When ray termination or
cycling occurs, however, the path generation will terminate at a point p*(T*%) with 7% < 1.

More details on constructing an invertible basis and pivotal rules can be found in [10] and
[16].

2.4 Nonmonotone Search

The nonmonotone descent scheme implemented in the PATH algorithm distinguishes be-
tween m-steps, d-steps, watchdog steps [3], and projected gradient steps.

The merit function value at the Newton point 2¥(T}) is checked by using nonmonotone
descent criteria during m-steps. In particular, given a reference value R, the point is
acceptable if

R = aV¥(2*(0)" (2"(0) — 2*(Ti)),
W (M (Ty)) < if VU (2*(0))7 (*(t) — 2(Tk)) <0 (8)
(1-0)R, otherwise



The reference value is decreased as the algorithm proceeds. If the Newton point satis-
fies this criterion, we save it as a check point for use with the watchdog strategy. Ev-
ery time the check point is updated, the corresponding Newton point z* (Ty) comprising
(2%(T}), w*(T}),v*(T},)) and the Newton point found in the next iteration z*+1(T,,;) and
xFT1(T}4 1) are saved so that regeneration of the path will not be necessary if we have to
go back to this check point.

A d-step is acceptable if the Newton point zk(T k) is close enough to the current point
2#(0). In particular, the point is accepted if

125(Ty) — 2*(0)]| < A

and the merit function does not become too large, where A is initialized to a preset value
and decreasing as the algorithm progresses. If, at the same time, the nonmonotone descent
criterion is satisfied, then current point is saved as a check point. If the d-step conditions are
not satisfied, then the nonmonotone criterion is checked. Moreover, after every n d-steps,
the nonmonotone descent criterion is checked.

If the nonmonotone descent criterion is violated in an m-step or if the merit function
value would increase too much over the current reference value when accepting a d-step,
then a watchdog step is taken. The watchdog step retrieves the most recent check point
saved consisting of the four points z¥(0), z*(0), 2*(T}), and z*(T}) for some k. With
these points, a search is performed to find a new point satisfying the nonmonotone descent
criterion. The user can select to search along the line segment connecting the two projected
points

2Fla) = (1 - a)z’;(O) + azk(T,;) (9)

or the projected arc connecting the two Newton points

(o) = mr((1 — a)zF(0) + a:vk(T,;)). (10)
In either case, we find a step length « € (@, 1) iteratively such that

i R — oV U(2F(0)7(F(0) — 2 (a)),
U(F(a)) < if VI(2F(0))7(2F(0) — 2F(a)) < 0 (11)
(1 —ao)R, otherwise,

where & is a constant minimum step size and R is the current reference value. The default
search type in the PATH solver is a line search.

If the step size in the search becomes too small without finding a point satisfying the
nonmonotone descent criterion, then a monotone projected gradient step for our smooth
merit function ¥ is taken as follows. We first move back to the best point, which is the
check point with the smallest merit function value, say k. Then a step length o € (&, 1) is
determined such that

] U(24(0)) — o VE(2F(0)) (24(0) — 2*(a))
V(zH(a)) < if VU(2#(0))"(2%(0) — 2"(a)) < 0 (12)
(1 — ao)¥(2%(0)), otherwise,



with B B ) )
o) = (1 —a)2%(0) + ang(zF(0) — VI (2F))

when using a line search and

o) = me((1 — a)2F + a(zF — VI(2F)))

when using an arc search. The default gradient search type in PATH is an arc search.

2.5 Summary

A summary of the main PATH algorithm is as follows:
PATH CODE

1. Initialization: let 2%, 72 > 1,A = A > 0,3 € (0,1) be given:
set k = 0, check_point = 0, best_point = 0;5 = 0,b = 0,g = A, Ry = ¥(2").

2. If ¥ (2*) = 0, stop.

3. Update the perturbation parameter e. Using the linearization approximation Ly,
apply the transformation and generate a path from z* to the solution of the linear
complementarity subproblem: [0,T}] — B, T}, € (0, 1] satisfying (7).

4. If (k < check_point + n) then
d-step:
if (||2%(Tk) — 2*(0)|| < A), the step is small enough; accept it:
set 2F1(0) = 2F(Ty);
set A = A x (3;
if the nonmonotone descent criterion in (8) is satisfied,
update check_point;
increment k and go to Step 2.
if U(z%) > LargeConstant x R;,
perform a watchdog step;
else, the step is too big; perform an m-step.
else
m-step:
if the monotone descent criterion in (8) is satisfied with the reference value R;,
accept the step:
set 2F1(0) 1= 2¥(Ty);
else perform a watchdog step:
set k = check_point, A = Aj;
if o € (@, 1) can be found satisfying the condition in (11) with



reference value R;, by conducting a line or arc search in (9)-(10),
set ZF1(0) := 2F(a);
else perform a projected gradient step:
set k = best_point, N = Ny;
find a € (a, 1) satisfying (12);
update check_point:
increment j; update R;; set A; = A;
set check_point = k + 1;
update best_point if Y neck point < Yhest_point, Dy cloning the check_point

info to the best_point;
5. Increment k, and go to Step 2.

At the beginning of Step 3, with z* € B given, the initial values for w* and v* need to
be supplied. In other words, we need to calculate a corresponding =¥, whose projection is z*
and which has the best normal map residual. We do so by solving the following optimization
problem (omitting the superscripts):

ity ||z — 2 + F(2)]]
s.t. r=z—w-+v
mB(x) =z
w>0,v > O,wTv =0.

In practice, this problem is solved simply as

1le§lz andf2->0 xi:li—fi,’wi:fi,?}izo
else if z; > u; and f; <0 ri =u; — fi,w; =0,v; = —f;
else x; =z, w; =v; =0

fori e {1,...,n}.

Some “safeguard” steps are omitted from the algorithm summary. For example, to
determine if whether we should go into a watchdog step directly, we always check first to
see that the normal function Fp is defined at the newly generated point z*.

3 UMFPACK and COIN-OR Utilities

The key to obtaining efficiency in the PATH algorithm depends on solving a series of
subproblems in the form of linear complementarity problems (7) using a relative of Lemke’s
method. We call each iteration of PATH a major iteration and each pivotal step in solving
the linear MCP a minor iteration. At each major iteration, factorization of the current basis
matrix, which corresponds to the active set at the current point, together with rank-one
updates (corresponding to the pivotal steps) is required. In the crash procedure described
above, a Newton system as in (3) needs to be solved at each iteration, which also requires



routines capable of factoring and solving linear systems. In the current implementation of
PATH [16], the factor, solve, and update procedures were first coded to use the LUSOL
routines.

A test run on the MCPLIB problems with PATH/LUSOL suggests that on average,
74% of the total solving time is spent factoring, solving, and updating linear systems.
Moreover, as we can see below using a dynamic game (dyngame), the proportion of time
spent in these routines increases significantly as the size of the system grows. The dynamic
game (dyngame) also provides better means for comparing the performance of the LUSOL
routines with one of its alternatives — the UMFPACK routines.

Dynamic games are mathematical models of the interaction between independent agents
controlling a dynamical system. Such situations occur in military conflicts, economic com-
petition, and parlor games such as chess or bridge. The actions of the agents (also called
players) influence the evolution over time of the state of the system. The difficulty in de-
ciding what should be the behavior of these agents stems from the fact that each action an
agent takes at a given time will influence the reaction of the opponent(s) at later times. The
specific model considered here is a game played on a grid based on the model of dynamic
competition in an oligopolistic industry [13, 29]. This model has been used extensively
in applications such as advertising, collusion, mergers, technology adoption, international
trade, and finance and has become a central tool in analysis of strategic interactions among
forward-looking players in dynamic environments.

Figure 1 is the nonzero structure of the initial basis matrix of the dyngame problem.
The size of the matrix is 1600 x 1600, with 16, 656 nonzero elements. Hence the basis matrix
is rather sparse, with density equal to 0.65%.

Basis Matrix
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400}
600 | 1
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4] 1000 1200 1400 1600

Figure 1: Initial basis matrix of dyngame for v =1 and N=20

Figures 2 and 3 are the fill-in of the summations of the lower and upper triangular
matrices obtained from the the LU factorization computed by the LUSOL routine and
UMFPACK routine, respectively. The LUSOL routine computes lower and upper triangular
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Figure 2: L 4+ U obtained from the LU Figure 3: L 4 U obtained from the LU
factorization by the LUSOL routine factorization by the UMFPACK routine

matrices L and U which satisfy LU = PB(Q, where B is the original matrix and P, Q are
the permutation matrices. The L and U matrices obtained from the UMFPACK routine
satisfy LU = PBQ, where P, Q are the permutation matrices and B is the original matrix
after row scaling. The number of nonzero elements is 68,203 in Figure 2 and 66,684 in
Figure 3. Hence the density of the matrices is 2.66% in Figure 2 and 2.6% in Figure 3. The
densities of the LU matrices resulting from the two factorization routines are also similar
when the size of the problem increases, as seen in Table 1, where Dim is the dimension of
the basis matrix and Nnz is the number of nonzero elements in L + U.

Table 1: Density of the L + U Matrices from Factorization

Problem LUSOL UMFPACK
N Dim Nnz Density Nnz Density
20 1600 x 1600 68,171 2.66% 66,684 2.60%

50 10,000 x 10,000 | 587,112  0.59% | 658,755  0.66%
100 40,000 x 40,000 | 2,773,928  0.17% | 2,778,235  0.17%

Table 1 shows that the densities of the resulting L+ U matrices do not increase as the size
of the problem grows. However, the time taken to perform the basis package functionalities
when using LUSOL grows significantly with the increase of the problem size, as seen in
Table 2 (Factor is the time spent in the basis package routines; Total is the total CPU time
taken in the whole PATH code; Pct is the percentage of the total time spent in performing
factor and solve routines), whereas a rather moderate growth in the time spent in the basis
routines is observed when using the UMFPACK package. Table 2 again indicates that the
major computational issue in PATH lies in performing the basis routines efficiently, since
most of the time is spent in the basis routines. One might postulate that the time increase
is due to more irregular data access, but we have not demonstrated this rigorously at this
stage. Clearly, however, if we can carry out the basis routines efficiently, we are potentially
able to substantially improve the efficiency of the PATH algorithm.
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Table 2: Time Spent in Basis Routines Vs Total Time Taken in PATH

Problem LUSOL UMFPACK
N Factor Total Pct Factor Total Pct
20 0.13 0.18 72.2% | 0.09 0.14 64.3%
50 2.66 2.99 89.0% | 0.86 1.18  72.9%
100 16.55 17.92 92.4% | 4.41 5.78  76.3%

COIN-OR is a collection of open source routines for solving linear, mixed integer, non-
linear, and mixed integer nonlinear programming problems. These solvers have basis fac-
torization utilities designed to support many of the projects in the COIN-OR repository,
including the COIN-LP solver. The results of solving several moderately sized LPs using
different LP solvers are presented in Table 3. The size of the initial models is given by the
number of rows, columns, and number of nonzeros (Row, Col and Nnz). The CPU-seconds
(Time) spent in solving these LPs using various LP solvers are presented under each solver
name for comparison. The examples in Table 3 shows that the COIN-LP solver is compa-
rable to the CPLEX solver, which is widely considered to be the best linear program (LP)
solver, and is much more efficient than LUSOL as used in the MINOS/SNOPT solver. Since
the COIN-LP solver depends on the COIN-OR utilities to process its linear systems, these
results lead to the assumption that the COIN-OR utilities may provide a more efficient lin-
ear systems solver than LUSOL. This assumption may fail, however, because the COIN-LP
solver may rely on its pivot choice instead of linear systems solver to achieve the efficiency
exhibited here.

Table 3: LP Examples

Problem Time
Name Row Col Nnz CPLEX | COIN-LP | MINOS | SNOPT
storm 14388 34115 114974 0.61 1.25 15.19 16.45
pds-06 9882 28656 82270 0.24 0.34 18.68 19.29
pds-10 16559 48765 140064 0.56 0.71 155.94 126.14

4 Basis Packages

The PATH solver requires a basis package to provide certain functionality expressed via the
following functions:

Basis_Factor() Factors the given basis matrix.

Basis_Solve() Uses the factors to solve a linear system of equations.

Basis_Replace() Replaces a column of the basis matrix.

Basis_NumSingular() Indicates the singular row(s) and column(s) of the basis matrix

when singularity is detected.

11



4.1 LUSOL

Currently, the PATH solver uses the LUSOL [24] sparse factorization routines from the
MINOS [28] nonlinear programming solver. The routines are based on a Markowitz fac-
torization and a Bartels-Golub update [1, 31, 32]. The major functions provided by the
LUSOL routines are as follows:

Factor For a given sparse matrix A,,xn, computes a factorization A = LU by Gaussian
elimination with a Markowitz pivotal strategy to choose permutations P and @, so
that PLP’ is lower triangular and P'UQ is upper triangular (when m = n) or upper
trapezoidal (when A is rectangular).

Solve For a given vector b,,, uses the LU factors to find a vector x,, that solves the linear
system Az = b.

Update Modifies L and U to obtain a new factorization A = LU when A is updated. The
updates include addition, deletion, or replacement of a column or row of matrix A
and rank-one modification.

Hence the LUSOL routines are able to provide the functionalities required both by the crash
procedure (as in (3)) and Lemke’s procedure (as in (7)) in the PATH algorithm.

If the matrix A is singular or ill-conditioned, the return status from the factorization
routine will indicate the detection of singularity. Since the dimensions and condition of A are
almost always reflected in U, the number of “apparent” singularities is taken to be the num-
ber of the “small” diagonals of the permuted U. This number, together with the positions
of such elements, is also returned by the factorization routine. The Basis_NumSingular()
routine is designed to use this information to determine the corresponding singular row(s)
and column(s) of A.

4.2 UMFPACK

UMFPACK is a set of routines for solving unsymmetric sparse linear systems [6, 5, 8, 7]. It
is based on the unsymmetric multifrontal method and direct sparse LU factorization. The
primary UMFPACK routines required to factorize A and/or solve Ax = b are as follows:

Factor For a given sparse matrix A, performs a column preordering to reduce fill-in and
a symbolic factorization. Then performs a numerical factorization, PAQ = LU,
PRAQ = LU or PR™'Q = LU, where R is a diagonal matrix of scale factors, P and
@ are permutation matrices, L is lower triangular, and U is upper triangular or upper
trapezoidal when A is rectangular, using the earlier symbolic ordering and analysis.

Solve Solves a square sparse linear system Az = b, using the numeric factorization com-
puted by factorization routines.

The UMFPACK package alone is sufficient to support the crash procedure, since only factor
and solve functionalities are required. However, in order to solve the linear MCPs in (7)
efficiently using the pivotal technique, an algorithm that enables rank-one updates must be
provided. In our implementation of the new basis package, we exploit a stable and efficient

12



block-LU updating method, proposed in [22] and [12]. A brief description of the rank-one
updating method is follows.

A sequence of rank-one modification occurs when we solve the linear MCP in (7). For
the sake of simplicity, let us express the system in (7) in a more general form:

Hy=h (13)

yeB

with B = B x [0,1] x [0,00] x [0,00]. Suppose that H p denotes the basis matrix corre-
sponding to a basic feasible solution of the above system (13), whose LU factorization is
computed. At each subsequent pivot a rank-one modification is made to the basis matrix.
After a certain number of updates, let V}, contain the columns from H that have newly
become basic since the factorization of H p; let Uy contain unit vectors representing the
location of the column being updated, with k referring to the number of columns in Uy.
(Note that k is not necessarily equal to the number of updates performed since the factor-
ization of H p.) Hence the above matrices have the following dimensions: H g is n x n, V
isn X k, and Uy is n x k. The new basis matrix H 5 can be expressed as

Hpz=Hp+ (Vi — HgUp)UL,
and it is easy to see that the system H zy = h is equivalent to
Hp Vg il [h
Lo o ln )16 ] w0

with the solution y = y1 + Uy y2.
The matrix in (14) has the following block-triangular factorization:

H,B Vk . H,B I Yk
ur L UF -Gy I

HpY, =V, Cp=UlY,.

where

We see that the solution to (13), and hence H 5y = h may be obtained by

H.Bw = il7
Cry2 = Ulw,
y1 = w — Ypyo.

All updating information is carried along via the Schur-complement matrix Cx(= UL H .731 Vi)
and the matrix of transformed columns Y. Rather than modifying the factors of H g, we
can now carry out the updates on the factors of a much smaller matrix Cy, which has
dimension k independent of the size of the original matrix H . The LU factors of H g can
be used without modification for many iterations.

In our implementation, the maximum size of CY, is set to be 100. As long as the dimension
of C}, doesn’t exceed this number, no refactorization is performed. (The maximum size is
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set to be an option so that the user can modify this option to control the refactorization
frequency.)

The updates of C}, are carried out on the LU factors of Cy, in a slightly different form:
L;Cy = U, where Uy, is an upper triangular matrix and Ly is a square matrix. Ly and Uy
are stored as dense matrices, since the size of Cj, is relatively small. Depending on which
columns enter and leave the basis at each pivot, different types of updates to matrices
Cy and Yy are performed. Correspondingly, the LU factors of C) are modified by using
sweeps of stabilized elementary transformations [23, 4]. In solving Crys = Ul w, only a
matrix-vector multiplication with L; and U, g w and a backward triangular solve with Uy
are required. Therefore the updates can be achieved at a much lower cost than performing a
full factorization at every pivot. A detailed description of the update types can be found in
[12], together with the description of how to store Y} efficiently with dense and sparse parts.
After a number of iterations, the scheme performs a factorization of the current basis H z
and redefines it to be H g. This part of our C code is based on a Fortran code LUMOD,
originally developed by [34]. The updating routines implemented above can be combined
with other factor and solve packages (besides UMFPACK) and be used more generally in
other linear system operations where such functionalities are required.

When the matrix being factorized is singular or ill-conditioned, UMFPACK routines
do not provide the same singularity information (such as the number of apparent singular
elements and their locations in U) as the LUSOL routines. Therefore the upper triangular
matrix U needs to be extracted from the object returned by UMFPACK together with
the permutation matrix P and ). Corresponding routines are supplied to determine the
singular row(s) and column(s) of the original matrix A. The threshold number used by the
LUSOL routines to determine “small” elements in U is adopted for the factors obtained by
using the UMFPACK routines.

4.3 COIN

The COIN-OR utilities are a collection of open source utilities written in C++. Fac-
tor, solve, and update are contained in a set of “CoinFactorization” routines, based on a
Markowitz factorization and a Forrest-Tomlin update [21].

Factor For a sparse matrix A given as triplets, computes a factorization by exploiting
the “CoinFactorization::factorize” routine in COIN-OR utilities. The factor process
starts from a sparse factor routine. Conditioning on the number of elements in the
selected pivotal row and column, the sparse factor routine continues in one of four
sparse routines. At every pivot iteration, a check is performed in order to determine
whether to switch to a dense factor routine provided by either a Fortran code from
LAPACK (preferred) or the COIN-OR utilities itself.

Solve For a given vector b, uses the existing LU factors of A to solve Ax = b with the
“CoinFactorization::updateColumnFT” routine of the COIN-OR utilities. Permutes
the resulting solution vector by using the permutation matrix returned from the above
factor routine.

Update Exploits the “CoinFactorization::replaceColumn” routine in the COIN-OR utili-
ties to obtain a new factorization when matrix A is updated.
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The COIN-OR utilities alone are able to provide the functionalities required by both the
crash procedure (as in (3)) and Lemke’s procedure (as in (7)) in PATH. To improve the
accuracy and stability of COIN, we adapted the linear refinements and scaling used by
COIN-LP routines. These extra procedures cost one more solve at each crash step and one
more refactorization at each major iteration.

If the matrix A is singular or ill-conditioned, the factorization routine will indicate the
detection of singularity on exit. The columns that are left unpivoted will be marked by
—1 in the permutation matrix (in vector form) returned. The Basis_NumSingular() and
Basis_GetSingular() routines are modified to exploit this information and determine the
corresponding singular row(s) and column(s) of the matrix A.

4.4 DENSE

Besides the three basis packages designed for sparse systems, PATH can use a set of dense
basis factorization utilities. The dense routines exploit the updating procedure [20] and
provide the following major functionalities.

Factor For a given dense square matrix A, ., computes a factorization PAQ = LU by
Gaussian elimination with a complete pivoting strategy to choose permutations P and
@, so that L is unit lower triangular and U is upper triangular.

Solve For a given vector b,,, solves the two triangular systems with the L, U matrices using
forward and backward substitution to find a vector x, that solves the linear system
Ax =b.

Update Updates L and U in a stable manner to obtain a new factorization when a rank-one
update is performed on A.

Despite the dense routines’ simplicity, we do not recommend it in our applications because
we generally deal with large sparse systems, especially within the Lemke procedure. In the
dense case, only the singularity message is printed, but no actual Basis_ NumSingular()
routine is supplied.

5 Computational Results

The results obtained from using the LUSOL, UMFPACK, and COIN basis packages on
the dyngame problem are presented in Table 4. The problem size containing the number of
columns and rows (Col/rows) and the number of nonzeros (nnz) is listed in the first column
of Table 4. We then report the data parameter v and the time in CPU-seconds spent in
the basis package (Basis time), the total time (7otal), and the final residual (Residual
represented by a(—fF) = a x 1077) when using the LUSOL, UMFPACK and COIN basis
packages.

The CPU time spent in the basis package and the whole program in Table 4 shows clearly
that the UMFPACK basis package is significantly more efficient than LUSOL. The final
residuals suggest that the UMFPACK basis package leads to increased accuracy. Arguably,
the UMFPACK basis package also improves the reliability of the MCP solutions, not only
because of the reduced residuals, but also because for v = 3 with N = 200 and N = 300
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Table 4: Results of the dyngame Problem

[ Problem Size | ¥ LUSOL UMFPACK COIN

[ | | Basis/Total Time Residual | Basis/Total Time Residual | Basis/Total Time Residual |
N =20 1 0.13/0.18 2.82(-9) 0.09/0.14 1.96(—9) 0.17/0.22 1.06(—9)
Col/rows = 2,400 | 2 0.14/0.19 3.56(—9) 0.09/0.14 1.60(—9) 0.17/0.22 1.61(—9)
Nnz = 19,856 3 0.07/0.12 3.30(—9) 0.08/0.13 9.69(—10) 0.08/0.13 9.77(—10)
N =50 1 2.66/2.99 1.09(—8) 0.86/1.18 1.09(—9) 1.80/5.12 2.00(—9)
Col/rows = 15,000 | 2 0.93/1.23 1.27(—8) 0.55/0.86 1.65(—9) 1.32/1.62 2.51(—9)
Nnz = 127,616 3 0.86/1.17 4.84(—9) 0.49/0.79 9.99(—10) 1.34/1.64 1.01(—9)
N = 100 1 16.55/17.92 6.88(—7) 4.41/5.78 2.09(—9) * *
Col/rows = 60,000 | 2 6.07/7.39 5.36(—7) 2.03/3.33 1.70(—9) N «
Nnz = 5,152,216 3 9.28/10.57 5.97(—9) 1.87/3.16 1.10(—9) 18.61/19.90 1.10(—9)
N = 200 1 93.52/99.14 3.73(=7) 23.48/29.10 2.43(=9) . -
Col/rows = 240,000 | 2 29.07/34.34 7.82(—8) 8.72/14.02 1.89(—9) - -
Nnz = 2,070,416 3 92.88/98.16 1.50(—=7) 8.45/13.72 1.37(—9) 135.82/141.12 1.38(—9)
N = 300 1 258.78/271.56 2.81(—7) 63.01/75.73 2.90(—9) . .
Col/rows = 540,000 | 2 69.41/81.35 2.95(—7) 22.13/34.13 2.17(—9) . .
Nnz = 4,665,616 3 329.76,/342.28 5.45(—7) 21.72/34.18 5.32(—7) 352.71/365.20 5.32(—7)

the time spent on LUSOL is significantly longer than for v = 2, while experiences from the
rest of the smaller problems indicate that v = 3 should take a similar amount of time to
solve as v = 2, which is precisely the situation with UMFPACK. The COIN basis package,
on the other hand, is successful only in solving a subset of the dyngame problems. For the
instances marked with *, COIN encounters accuracy issues when solving the linear systems.
For example, in solving the problem with v =1 and N = 100, the inf-norm of the residual
from computing the first crash iteration is checked. The COIN basis package has a residual
as big as 5.91 x 102, whereas LUSOL solves the system with inf-norm of the residual equal
1.88 x 107%, and UMFPACK solves the system with residual equal 2.27 x 10~!3. We report
this error but do not want to change COIN-OR source, so we can use the updated versions
of COIN-OR utilities as they are available. The problems marked with — are too big for
COIN to factor. On the successfully solved instances, COIN takes much more time than
both LUSOL and UMFPACK, especially as the problem size grows. The number of major,
minor, and crash iterations taken to solve each problem (successfully) is identical for all
three basis packages.

Except for the option setting for choosing between different basis packages, the default
settings have been used for all the problems in Table 4 but one. For the last problem with
N = 300 and case 3, crash_searchtype is set to be arc, since the default line search with
both basis packages takes enormous amount of time to solve.

As expected, it is important to exploit sparse factoring and solving routines on the
dyngame problem rather than the dense basis routines. This is clearly seen from the results
in Table 5, obtained by running dyngame with factor_method set to be dense. The time
taken by the dense option is hundreds of times slower than the sparse options (UMFPACK
and LUSOL). It takes more than 2400 CPU-seconds to solve the first crash step of dyngame
with IV = 50; hence the time for solving larger size problems is not shown.

Table 5: CPU Time Spent in the Basis Package for Solving dyngame Using Dense Option

Problem Size ~ | Basis Time  Residual
N =20 1 61.37 1.96(—9)
Col/rows = 2,400 | 2 60.51 1.61(—-9)
Nnz = 19,856 3 51.63 9.70(-10)
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The new basis packages are also tested on the MCPLIB [9] problems (1005 MCPs).
The models on which all basis packages succeed or fail are not reported here. Table 6
lists only the models whose solution status is different for different basis packages. The
total number of solves with different starting points for each problem is listed in the second
column. Under each basis package name, the number of failures is shown. Comparatively,
LUSOL has the most failures in solving these relatively difficult problems. UMFPACK does
slightly better than LUSOL. COIN has the fewest failures among the three options. The
summation of CPU times (basis and total), together with the total of number of major and
minor iterations for solving this MCP test set is presented in Table 7. In order to make the
computational times comparable, only the problems that are solved successfully by all the
options are considered (972 MCPs). We set the LUSOL statistics to be the base value (i.e.,
letting them be 100%) and compute the relative ratios of the other options’ statistics to
the base value. As we can see in Table 7, LUSOL outperforms both UMFPACK and COIN
slightly in time. This result suggests that UMFPACK does not have much advantage in
reducing the solving time for these relatively smaller-scale problems. As we improve the
numerical stability of COIN by incorporating refinements and scaling process, COIN does
achieve more successes but take more time to solve these MCPs.

Table 6: Comparative Results on MCPLIB Models

Model No. of Solves | LUSOL UMFPACK COIN
cgereg 22 1 1 0
duopoly 1 0 1 1
fixedpt 2 0 2 0
fried8 5 2 0 0
jlangqi 3 1 0 0
kyh 2 0 0 1
kyh-scale 2 1 1 0
pgvonl05 6 1 0 0
pgvonl06 6 1 1 1
tieboutl 2 0 1 0
tinsmall 64 0 0 1
venables 2 2 0 0
fails count 9 7 4

Table 7: Sum of Iterations and Time spent on MCPLIB problems

Basis Package | Major (ratio%) Minor (ratio%) Basis Time (ratio%) Total Time (ratio%)
LUSOL 10110 (100) 188720 (100) 93.64 (100) 119.59 (100)

UMFPACK 10448 (103) 224354 (119) 102.46 (109) 135.97 (114)
COIN 11434 (113) 180530 (96) 107.69 (115) 133.03 (111)

Table 8 contains the set of the problems in MCPLIB whose sizes can be increased. The
CPU-seconds spent on the basis package using UMFPACK, LUSOL, and COIN in solving
each instance are listed in Table 8. For most of these problems (bai_haung, bratu, dirkse2,
dongbai, obstacle, and opt_cont), as the problem size increases, the advantage of UMFPACK

17



in reducing the solving time over LUSOL becomes more significant. For the other problem
(bert_oc), a time reduction using UMFPACK basis package is not observed. Nevertheless,
the UMFPACK basis package can be used as an alternative to LUSOL without much loss
of efficiency on this problem. The COIN option in general takes more time than LUSOL
except for the dirkse2 and dongbai problems. The COIN basis time marked by * suggests
that COIN may have accuracy issues because it takes different PATH steps from LUSOL
and UMFPACK. COIN cannot process the problems marked by — because the problems
sizes are too big. For the largest instance of the dongbai problem, UMFPACK essentially
takes 19 Newton steps to solve (time marked by ¢), whereas LUSOL and COIN both take
20, which suggests that UMFPACK solves this system with better accuracy than LUSOL
and COIN.

Table 8: Comparative Results on Enlarged MCPLIB Problems

Test MCP Basis Time
Problem Name Size Density % LUSOL UMFPACK COIN
bai-haung 4,900 0.10 0.10 0.04 0.18
19,600 0.03 1.25 0.21 15.70
78,400 0.01 9.16 1.06 552.07
313,600 0.00 103.47 6.12 -
bert_oc 5,000 0.05 0.02 0.05 0.02
50,000 0.01 0.29 0.56 0.44
500,000 0.00 5.56 8.47 26.91
bratu 5,625 0.09 0.95 0.54 2.33
22,500 0.02 16.60 5.29 97.54
90,000 0.01 278.58 49.71 5918.56*
dirkse2 64,001 0.00 29.45 17.90 26.52
216,001 0.00 395.49 261.64 363.42
512,001 0.00 2287.89 1461.80 2181.53
dongbai 7500 0.08 4.64 0.60 2.21
14,700 0.04 51.97 2.59 43.89*
30,000 0.02 658.19 10.42° 255.01
opt_cont 288 5.59 0.002 0.007 0.005
8,192 0.21 0.12 0.17 0.15
32,032 0.05 0.57 0.76 0.82
160,032 0.01 5.17 4.95 9.27
320,032 0.01 17.32 12.52 30.66
480,032 0.00 31.47 22.51 -
obstacle(1) 10,000 0.05 0.33 0.31 0.64
(2) 0.85 0.39 1.40
(3) 0.67 0.63 1.45
(4) 0.75 0.64 36.46™
(5) 0.87 0.35 1.69
(6) 1.25 0.65 154.19*
(7) 1.06 0.59 29.08*
(8) 1.17 0.43 3.05
obstacle(1) 40,000 0.01 5.61 3.16 22.98
(2) 8.74 3.54 48.76
(3) 11.28 5.65 3402.44*
(4) 12.15 5.65 1746.77*
(5) 8.39 2.62 52.92
(6) 31.46 9.00 262.90
(7) 18.34 5.74 2272.43*
(8) 10.69 2.44 120.46

A closer examination at the distribution of the basis time taken by the UMFPACK and
LUSOL options is given in Table 9, in which we randomly generate three sets of LCPs
and total their basis time for each set. (The COIN option is not compared here because,
in general, it performs more solves and factors than do the other options.) Both options
took a similar number of iterations to solve each LCP in the test sets. Problem Set I
comprise 50 LCPs of relatively smaller-scale (average number of cols/rows = 1168) and
higher density (average density = 4.5%). While LUSOL spends slightly more time in the
factor and update routines, its speed in the solve routines outweighs the other statistics
and makes it more efficient than UMFPACK. When the problem size increases in Set Il
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(20 LCPs with average number of cols/rows = 3795 and density = 4.4%), the advantage
of UMFPACK over LUSOL in factor and update routines becomes more significant, and it
outperforms LUSOL. Problem Set III is generated with the same size as Set II but with
reduced density (of 0.3% on average) and slightly different matrix structure. For these
systems, LUSOL works better than UMFPACK because the factor time taken by the two
options is comparable, and even though LUSOL takes more time performing updates, it is
much faster in its solve routines. Similar observations are obtained with the basis time for
the MCPLIB problems. In particular, LUSOL spends 82%, 13%, and 5% of basis time in
factor, update, and solve routines, where UMFPACK spends 51%, 4%, and 45% of basis
time in these routines, respectively.

Table 9: Distribution of Basis Time for Randomly Generated LCPs

LUSOL UMFPACK
Test Set | Factor/Update/Solve Time Basis Time | Factor/Update/Solve Time Basis Time
I 22.80/7.00/2.26 32.15 17.24/1.67/20.66 30.57
I 821.16/642.69/47.75 1511.61 172.59/88.18/324.08 584.85
111 1.11/11.14/2.86 15.08 1.86/4.39/33.56 39.77

6 Discussion

We have shown that incorporating the UMFPACK package as an alternative to the LUSOL
basis package in PATH improves the solution of large-scale problems in that the time spent
in the basis package (hence in the overall program) is reduced and the reliability or accuracy
of the solution is increased. This advantage is most significant when the solution process
is dominated by the crash procedure. However, on general sparse problems requiring large
numbers of pivots in the complementarity subproblems or on small problems, the LUSOL
basis package tends to be more reliable and more efficient than UMFPACK, in part be-
cause of the efficiency of the solve routines in LUSOL. Therefore, the LUSOL basis package
remains the default basis option in the PATH code, and it is advantageous to have inter-
changeable basis packages in PATH, since their performances vary with different problem
characteristics.

The alternative of using the COIN basis package is motivated by COIN-LP’s better
performance than the LUSOL-based MINOS/SNOPT in solving LPs. In solving the MC-
PLIB problems, the COIN basis package is the most effective of the three options in the
number of successes with the help of the linear refinements and scaling procedures. The
trade-off, however, is an increase in the solution time. It is possible that utilizing these
methods more generally within PATH would improve robustness with other basis routines.
In solving large-scale systems, COIN is less efficient than LUSOL and UMFPACK; and
for several large instances, we observe numerical instability with COIN. As an open source
code, COIN-OR utilities have the advantage of being under constant modification and im-
provement. Hence we believe that the COIN has the potential to perform better in the
future.
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